

Key Components in Custom
Software Agreements
Prevent misunderstandings by covering your bases

By:
Avonelle Lovhaug
Avonelle@CodePoetrySoftware.com
www.CodePoetrySoftware.com

Last revised on: 6/26/2010

mailto:Avonelle@CodePoetrySoftware.com

Key Components in Custom Software Agreements

www.CodePoetrySoftware.com Page 1

If you’ve never been involved in a custom software development project, then hammering out an

agreement with a software development vendor can be challenging. There are some pitfalls specific to

software development that you’ll want to be aware of, or else the results may go awry.

A good software vendor will know most of these pitfalls and will come to the bargaining table with these

things in mind. Still, they’ll do it with their own best interests, and you shouldn’t rely on them to

remember everything.

Disclaimer: I’m not a lawyer, and this document should not be considered legal advice. It is merely an

attempt to describe items that should probably be covered in software agreements that may not be

covered in other agreements. It is not an exhaustive list.

Here are some items that belong in most custom software agreements:

Project objectives and / or requirements. The best project objectives focus on the business value

that the project will provide, not the implementation details. Here are two example objectives:

Mediocre:

Create a quotation system for our sales reps.

Better:

Reduce data entry and calculation mistakes in the quotation process that cost us sales and

money.

The second example is much better, because it focuses us on why we are building the application.

If possible, it is also good to include any requirements that you know of. Requirements can be

functionality specific, such as “must capture property name/address information”. However, there can

be a lot more to requirements than just the data you need to store. Here are some other requirement

areas you may not have considered:

 Maximum # of total users

 Maximum # of simultaneous users

 Typical transaction load (how many records do you think will be created/updated every day or

week or some other time factor)

 Maximum transaction load

 Security

o Will users need a user name/password?

o Will some of the data captured require special security handling (like social security

numbers or credit card numbers)? A good developer will help you to identify these

things, but it doesn’t hurt to give this some thought.

 Response time (for example, a web application response requirement might be: typical response

time for end users should be no greater than 10 seconds for users with a DSL connection)

 For web applications, the browsers types/versions that will be supported.

1

Key Components in Custom Software Agreements

www.CodePoetrySoftware.com Page 2

 The operating systems (and versions) that will be supported.

 Installation process needs (for non web applications). For example, you might require that a

previous version of the system must be automatically uninstalled when the new version is

installed.

Many of these numbers don’t need to be exact. For example, for a web-based application it probably

doesn’t matter whether you will allow 50 simultaneous users or 55. But there is a big difference

between 50 and 50,000. And some system tools like databases may license on a per user basis.

Assumptions. Assumptions differ from requirements in that they typically cover things that are NOT

required or included. Here are some assumption examples:

 This application will not attempt to calculate the tax rates.

 Database client license fees are outside the scope of this agreement, and will be purchased

separately by the client.

Assumptions are useful because they can help to make sure that both you and the developer are on the

same page. Assumptions can also help keep costs down by helping the developer to understand the

items that don’t need to be included in the price.

Tentative delivery date(s). If there are critical dates for delivery, you’ll want to include those in your

agreement. But keep in mind that a lot of things can happen during the course of a development

project, and so there may be legitimate reasons why you and the developer will mutually agree that a

delivery date can slip.

Communication guidelines and expectations. It is important to determine when you expect the

developer to respond to questions and requests. Typically, two business days is a reasonable

response time but you may have different expectations. Also, you should agree to a response time as

well. Early on, the developer will be very dependent on the information you and your team can provide

to them. If you don’t respond in a timely fashion, you can

bottleneck the entire project. Also, you may want to

specify the desired communication approach. I prefer to

use email with my clients for most day-to-day

communications, but everyone is different.

Feedback criteria. Nothing is perfect, and the initial

delivery of your software won’t be, either. As you

discover bugs and other issues, you will want to identify

the problems you have encountered to the developer. This

information can be communicated via an email, a

document or spreadsheet, or through the use of an issue tracking system. Personally, I prefer to use an

issue tracking system, as other methods can become unwieldy over time to track progress. In addition, a

good issue tracking system will help you to determine the version that fixes/changes were applied in.

Also, your agreement should spell out how quickly the developer can expect feedback, and how quickly

2

3

4

5

Issue Tracking System:

Software that allows users

to enter application

problem information, and

then track those problems

until they are resolved.

Key Components in Custom Software Agreements

www.CodePoetrySoftware.com Page 3

they will be expected to provide changes/corrections. Otherwise, the developer may move on to other

projects.

Acceptance criteria definition. One of the challenges with any project is determining when the

project is “done”. One approach is to decide that “done” is when the project is being used by its

target user group for “real”, production work. That will work for internal applications, but what about

external applications where the developer may not control if users are taking advantage of the new web

application. In this case, you may determine some other criteria, such as X days after delivery.

Cost and payment criteria. As a business person, you need to know how much your project will

cost. On the other hand, many developers are skittish about providing software development on a

fixed fee basis, because project scope seems to grow over time. There are several reasons:

 Users change their minds about features after they are implemented.

 Requirements are often missed.

 Requirements are often misunderstood.

Generally speaking, the larger the project, the more likely the scope will change. Here are my

suggestions for mitigating risk so that developers are willing to fix bid your project:

 Start small. If you have multiple projects in mind, try starting with one that is smaller in scope.

You’ll get a good introduction to how the process works, and the developer will get an

opportunity to understand you better.

 Chunk it. Break your project into smaller deliverables instead of one big deliverable at the end.

Then spend the time to review each piece as it is completed. The sooner you discover

disconnects between what you meant vs. what they heard, the quicker they can adjust the other

pieces to your needs. That minimizes the risk to them and also gives you peace of mind about

the state of your project. A good delivery frequency is every two to four weeks.

 Create a separate contingency budget. Set aside some additional funds for unknown

requirements that crop up during development. This is less necessary on smaller efforts, but as

projects become larger this is smart planning.

Work product ownership. Typically the party who is paying for the software owns the resulting work

product. However, you will want to spell this out in your contract – otherwise it is possible that the

developer could turn around and sell the work you paid for to your competition. Yikes! Also, there are

some muddy aspects of this that you will want to consider. For example, developers often use libraries

of common routines that use for multiple customers. This allows them to develop applications faster

and in a more consistent fashion. Does this mean that they won’t be able to reuse those routines, and

will have to start from scratch? This might affect their bid. Also, sometimes developers will use libraries

or components from third parties – you’ll need to make sure that those they plan on using don’t have

licensing agreements that will interfere with your own plans.

Keep these items in mind as you develop your custom software agreement, and you’ll increase the

chances of having a successful project.

6

7

7

